KA0801 Readme File

Principal Investigator/Organization:
Dr. Richard Feely
NOAA/PMEL
7600 Sand Point Way NE
Seattle, WA 98115
(206) 526-6214
Richard.A.Feely@noaa.gov

Ship Name: Ka’imimoana
Call Sign: WTEU
Country: United States
Ship Owner: National Oceanic and Atmospheric Administration (NOAA)

Temporal Coverage:
Cruise Start: February 2, 2008; Honolulu, Hawaii
Cruise End: March 6, 2008; Kwajalein

Shoreside support/Data Reduction: Cathy Cosca, cathy.cosca@noaa.gov

System Operators: Tonya Watson (Survey Tech)

Dataset ID/Location: KA0801.csv (www.pmel.noaa.gov/co2/uwpco2/)

Experiment Name: Underway measurement of atmospheric and surface water pCO2

Geographical Bounds (+ E, - W for Longitude; + N, - S for Latitude):
Westernmost Longitude: 167.613
Easternmost Longitude: -154.911
Northernmost Latitude: 8.788
Southernmost Latitude: -13.267

Method Description:
Equilibrator type/specifications: Showerhead, volume of ~0.5 L with a headspace of ~ 0.8 L.
Water Flow rate: 3.5 L/minute
Headspace gas flow rate: 60 ml/minute
CO2 Sensor: Licor 6262, Serial # IRG3-1295
Resolution/Uncertainty: 0.3 uatm for equilibrator measurements, 0.2 utam for atmospheric measurements.
The general principle of instrumental design and operation are described in:

and

Standard gases:
Standard gases are supplied by NOAA’s Climate Monitoring Diagnostics Laboratory in Boulder, CO, and are directly traceable to the WMO scale. Any value outside the range of the standards should be considered approximate, although the general trends should be indicative of the seawater chemistry.

Serial numbers and CO2 concentrations for the cylinders used on this cruise:

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>CO2 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA03065</td>
<td>364.08</td>
</tr>
<tr>
<td>CA06867</td>
<td>421.13</td>
</tr>
<tr>
<td>CC115011</td>
<td>466.38</td>
</tr>
<tr>
<td>CA07519</td>
<td>543.65</td>
</tr>
</tbody>
</table>

Sampling Cycle:
The system runs a full cycle in approximately 112 minutes. The cycle starts with 4 standard gases, then measures 10 atmospheric samples followed by 60 surface water samples. Each new gas is flushed through the Licor Analyzer for 4 minutes prior to a 10 second reading from the analyzer during which the sample cell is open to the atmosphere. Subsequent samples of the same gas are flushed through the Licor Analyzer for 30 seconds prior to a stop-flow measurement.

Units:
All xCO2 values are reported in parts per million by volume (ppmv) and fCO2 values are reported in microatmospheres (uatm) assuming 100 % humidity at the equilibrator temperature.

Calculations:
The mixing ratios of ambient air and equilibrated headspace air are calculated by fitting a second-order polynomial through the hourly averaged response of the detector versus mixing ratios of the standards. Mixing ratios of dried equilibrated headspace and air are converted to fugacity of CO2 in surface seawater and water saturated air in order to determine the fCO2. For ambient air and equilibrator headspace the fCO2a, or fCO2eq is calculated assuming 100% water vapor content:

\[fCO2a/eq = xCO2a/eq(P-pH2O)\exp(B11+2d12)P/RT \]
where fCO2a/eq is the fugacity in ambient air or equilibrator, pH2O is the water vapor pressure at the sea surface temperature, P is the atmospheric pressure (in atm), T is the SST or equilibrator temperature (in K) and R is the ideal gas constant (82.057 cm^3·atm·deg^-1·mol^-1). The exponential term is the fugacity correction where B11 is the second virial coefficient of pure CO2

\[
B11 = -1636.75 + 12.0408T - 0.032795T^2 + 3.16528E-5 T^3
\]

and d12 = 57.7 - 0.118 T

is the correction for an air-CO2 mixture in units of cm^3·mol^-1 (Weiss, 1974).

The calculation for the fugacity at SST involves a temperature correction term for the increase of fCO2 due to heating of the water from passing through the pump and through 5 cm ID PVC tubing within the ship. The water in the equilibrator is typically 0.2 °C warmer than sea surface temperature. The empirical temperature correction from equilibrator temperature to SST is outlined in Weiss et al. (1982).

\[
dln(fCO2) = (\text{teq-SST})(0.0317-2.7851E-4 \text{teq} - 1.839E-3 \ln(fCO2_{eq}))
\]

where \(dln(fCO2)\) is the difference between the natural logarithm of the fugacity at teq and SST, and teq is the equilibrator temperature in degrees C.

File Format

<table>
<thead>
<tr>
<th>COLUMN HEADER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GROUP/SHIP:</td>
<td>PMEL/Ka‘imimoana</td>
</tr>
<tr>
<td>2. CRUISE_ID:</td>
<td>KA<Year><nth cruise of year></td>
</tr>
<tr>
<td>3. JD_GMT:</td>
<td>Decimal year day</td>
</tr>
<tr>
<td>4. Date_DDMMYYYY</td>
<td>Date in the format DDMMYYYY</td>
</tr>
<tr>
<td>5. TIME_HH:MM:SS:</td>
<td>GMT HH:MM:SS</td>
</tr>
<tr>
<td>6. LAT_DEC_DEGREE:</td>
<td>Latitude in decimal degrees (negative values are in southern hemisphere).</td>
</tr>
<tr>
<td>7. LONG_DEC_DEGREE:</td>
<td>Longitude in decimal degrees (negative values are in western latitudes).</td>
</tr>
</tbody>
</table>
8. **xCO2W_PPM:** Mole fraction of CO2 (dry) in the headspace equilibrator at equilibrator temperature (Teq) in parts per million. Water comes from bow intake 2m below the water line.

9. **xCO2A_PPM:** Mole fraction of CO2 in air in parts per million.

10. **xCO2A_INTERPOLATED_PPM:** xCO2atm_ppm averaged linearly to match up with measurements xCO2eq_ppm

11. **PRES_EQUIL_hPa:** Barometric pressure in the equilibrator

12. **PRES_SEALEVEL_hPa:** Barometric pressure in the atmosphere

13. **EqTEMP_C:** Temperature in the equilibrator water.

14. **SST(TSG)_C:** Temperature from the ship's bow intake.

15. **SAL(TSG)_PERMIL:** Thermosalinograph salinity

16. **fCO2W@SST_uATM:** Fugacity of CO2 in sea water in microatmospheres calculated as outlined in the DOE Handbook.

17. **CO2A_uATM:** Fugacity of CO2 in air in microatmospheres

18. **dfCO2_uatm:** Sea water fCO2 - air fCO2 in microatmospheres.

19. **QC_FLAG:** Quality control flag
 - 2 = Good value
 - 3 = Questionable value
 - 4 = Bad value

20. **QC_SUBFLAG:** Descriptive quality control flag used when a value receives a “3” QC flag
 - 1 = Outside of Standard Range
 - 2 = Questionable/interpolated SST
 - 3 = Questionable EQU temperature
 - 4 = Anomalous ΔT (EqT – SST)(± 1°C)
 - 5 = Questionable Sea Surface Salinity
 - 6 = Questionable pressure
References

For questions or comments contact:
Cathy Cosca
NOAA/PMEL
7600 Sand Point Way NE
Seattle, WA 98115
206-526-6183
cathy.cosca@noaa.gov